Characterization of an in vitro model of elastic fiber assembly.

نویسندگان

  • B W Robb
  • H Wachi
  • T Schaub
  • R P Mecham
  • E C Davis
چکیده

Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites

Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Microfibril-associated MAGP-2 stimulates elastic fiber assembly.

Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 re...

متن کامل

New insights into elastic fiber assembly.

Elastic fibers provide recoil to tissues that undergo repeated stretch, such as the large arteries and lung. These large extracellular matrix (ECM) structures contain numerous components, and our understanding of elastic fiber assembly is changing as we learn more about the various molecules associated with the assembly process. The main components of elastic fibers are elastin and microfibrils...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 10 11  شماره 

صفحات  -

تاریخ انتشار 1999